Regulation of Skeletal Progenitor Differentiation by the Bmp and Retinoid Signaling Pathways
نویسندگان
چکیده
The generation of the paraxial skeleton requires that commitment and differentiation of skeletal progenitors is precisely coordinated during limb outgrowth. Several signaling molecules have been identified that are important in specifying the pattern of these skeletal primordia. Very little is known, however, about the mechanisms regulating the differentiation of limb mesenchyme into chondrocytes. Overexpression of RARalpha in transgenic animals interferes with chondrogenesis and leads to appendicular skeletal defects (Cash, D.E., C.B. Bock, K. Schughart, E. Linney, and T.M. Underhill. 1997. J. Cell Biol. 136:445-457). Further analysis of these animals shows that expression of the transgene in chondroprogenitors maintains a prechondrogenic phenotype and prevents chondroblast differentiation even in the presence of BMPs, which are known stimulators of cartilage formation. Moreover, an RAR antagonist accelerates chondroblast differentiation as demonstrated by the emergence of collagen type II-expressing cells much earlier than in control or BMP-treated cultures. Addition of Noggin to limb mesenchyme cultures inhibits cartilage formation and the appearance of precartilaginous condensations. In contrast, abrogation of retinoid signaling is sufficient to induce the expression of the chondroblastic phenotype in the presence of Noggin. These findings show that BMP and RAR-signaling pathways appear to operate independently to coordinate skeletal development, and that retinoid signaling can function in a BMP-independent manner to induce cartilage formation. Thus, retinoid signaling appears to play a novel and unexpected role in skeletogenesis by regulating the emergence of chondroblasts from skeletal progenitors.
منابع مشابه
Mesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کامل3911-3919-MicroRNA-100 inhibits BMP-induced osteoblast differentiation by targeting Smad1
– OBJECTIVE: MicroRNAs (miRNAs) act as key regulators of diverse cellular activities by regulating the expression of proteincoding genes. Osteoblast differentiation, a fundamental step in skeletal development, involves the activation of several signaling pathways, including transforming growth factor β (TGF-β), bone morphogenetic protein (BMP), and Wnt signaling pathways. MATERIALS AND METHODS:...
متن کاملBMP action in skeletogenesis involves attenuation of retinoid signaling
The bone morphogenetic protein (BMP) and growth and differentiation factor (GDF) signaling pathways have well-established and essential roles within the developing skeleton in coordinating the formation of cartilaginous anlagen. However, the identification of bona fide targets that underlie the action of these signaling molecules in chondrogenesis has remained elusive. We have identified the ge...
متن کاملGenome-wide Association Study to Identify Genes and Biological Pathways Associated with Type Traits in Cattle using Pathway Analysis
Extended Abstract Introduction and Objective: Type traits describing the skeletal characteristics of an animal are moderately to strongly genetically correlate with other economically important traits in cattle including fertility, longevity and carcass traits. The present study aimed to conduct a genome wide association studies (GWAS) based on gene-set enrichment analysis for identifying the ...
متن کاملPDZRN3 Negatively Regulates BMP-2–induced Osteoblast Differentiation through Inhibition of Wnt Signaling
PDZRN3 is a member of the PDZ domain-containing RING finger family of proteins. We previously showed that PDZRN3 is essential for the differentiation of C2C12 mouse mesenchymal progenitor cells into myotubes. Mesenchymal progenitor cells differentiate into osteoblasts, chondrocytes, and adipocytes in addition to myotubes, and we have now examined the potential role of PDZRN3 in the differentiat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 148 شماره
صفحات -
تاریخ انتشار 2000